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Summary
Preliminary election results on the night of November 5th⇝ who will win the presidency
and Congress?

Ensembled prediction rule: combines fundamentals model (based on obs. shifts in voter
preferences) and extrapolation model (based on obs. vote counting process)

Assumption‐lean inference: bootstrap + conformal inference yield final prediction intervals

Set‐up and notation
Data

Observe {Xi, Rit, Dit}N
i=1 for N counties over times t ∈ {0, . . . , 100} (% reporting)

Xi : covariates for county i (racial composition, education, income...)

Ri : Republican votes in county i

Di : Democratic votes in county i

Estimands: aggregate outcomes

MarginPA =
∑

i∈PADi,100 − Ri,100∑
i∈PADi,100 + Ri,100

Goals

M̂arginPA ≈ MarginPA

P
(
MarginPA ∈ ĈPA

)
≈ 90%

Additional forecasts for Electoral College and Senate control

Background
Prior work

Greben et al. (2006) cluster reporting units using previous elections and extrapolate from
within‐cluster observations

Pavia et al. (2008) fit Gaussian Process regression with well‐specified covariance kernel

Cherian et al. (2021) aggregate county‐level conformalized quantile regressions via
equi‐correlated Gaussian model

Problem
Prediction error distribution is non‐stationary over elections

Figure: County vote swings in the 2008‐2012 and 2012‐2016 presidential election cycles.

Problem
Previous election model is unstable

Prediction rule
Estimand

Yi :=
Di,100 − Ri,100
Di,100 + Ri,100︸ ︷︷ ︸
unit margin

Zi :=
Di,100 + Ri,100
Db

i,100 + Rb
i,100︸ ︷︷ ︸

turnout factor

Db
i,100, Rb

i,100 are the previous election result in that county

Fundamentals prediction rule

Using fully‐reported counties, fit models f̂Y (·) and f̂Z(·) for Yi and Zi

Yields estimator for aggregate margin:

M̂arginPA =
∑

i∈PAwi · f̂Y (Xi) · f̂Z(Xi)∑
i∈PAwi · f̂Z(Xi)

where wi = Db
i,100 + Rb

i,100

Our approach: f̂ (·) uses cross‐validated ridge regression where Xi includes previous unit
margin, race, and education

Why ridge?

AP data is imperfect (esp. early in election night)⇝ need good tools for outlier detection

Model is most important in early stages of election night⇝ n ≈ 250

Extrapolation prediction rule

Motivation
Nearly finished counties⇝ does reported unit margin predict final unit margin?
State‐specific voting rules may lead to "blue or red shifts" (c.f. PA in 2020, CA in 2018)
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Figure: Extrapolation error in FL (2020 pres.)

Errorextrap. =
Di,100 − Ri,100
Di,100 + Ri,100

−
Di,current − Ri,current
Di,current + Ri,current

Within‐state extrapolation error is predictable

Est. correction obtained via local regression: ĥi

Ensembled prediction rule

Variance‐minimizing weights:

Ŷi =
σ2

h · f̂Y (Xi) + σ2
f · ĥi

σ2
h + σ2

f
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Predictive inference: background

Goal
Want a model P for the joint distribution of{

Yn+i,100 − Ŷn+i, Zn+i,100 − Ẑn+i

}
(n+i)∈unobs.

∼ P

Assuming a statistical model, i.e., P ∈ {Pθ}θ∈Θ, is fraught

Standard spatiotemporal methods (kriging, random effects model) have poor predictive
coverage⇝ Gaussian assumption is problematic

Predictive inference: our approach
Model‐free methods (e.g., conformal inference) target marginal coverage

Theorem 2 (Gibbs, Cherian, & Candès, 2023)

Given any prediction rule f (·) and an exchangeable dataset {(Xi, Yi)}n+1
i=1 with Yn+1 unobs.,

P(Yn+1 ∈ Ĉ(Xn+1) | Xn+1 ∈ G) = 1 − α for all G ∈ G

Reframing this work

Ĉ(·) obtained via (modified) quantile regression (QR) on residuals (aka conformity scores)
Key insight: conformal inference corrects over‐fitting bias of high‐dim. QR on prediction errors

Assumption
If I fit our prediction rule to all of the data on election night,{

Yi,100 − Ỹi, Zi,100 − Z̃i

}
i∈[N ]

are independent (but not identically distributed)

We can estimate Ŷi − Ỹi via model‐free bootstrap (Politis (2015))

We can model heteroskedasticity in Yi − Ỹi via conformal prediction

Algorithm

1. Run conformal method (debiased QR) on leave‐one‐out residuals for α ∈ {0.01, . . . , 0.99}

⇝ CDF est. for Yn+k − Ŷn+k | Gn+k and Zn+k − Ẑn+k | Gn+k

‐ Our approach: run method over sub‐groups that historically capture heteroskedasticity

2. ComputeU =
{

UY
i , UZ

i

}
by evaluating the estimated CDFs at the observed values of Yi and Zi

3. Create B datasets
{

Xi, Y
(1)
i , Z

(1)
i

}
, . . . ,

{
Xi, Y

(B)
i , Z

(B)
i

}
by sampling (w/ replacement) fromU

4. Re‐compute prediction rule
{

Ŷ (b)(·), Ẑ(b)(·)
}B

b=1
on bootstrap data sets

5. Sample B sets of new test errors
(

ϵ
(b),Y
n+i , ϵ

(b),Z
n+i

)
from conformal model

Bootstrap pivot

M̂arginPA
(

Ŷn+i + ϵ
(b),Y
n+i , Ẑn+i + ϵ

(b),Z
n+i

)
− M̂arginPA

(
Ŷ

(b)
n+i, Ẑ

(b)
n+i

)
d≈

M̂arginPA (Yn+i, Zn+i) − M̂arginPA
(

Ŷn+i, Ẑn+i

)

6. Output
ĈPA =

[
M̂arginPA + Qα/2(Pivot), M̂arginPA + Q1−α/2(Pivot)

]
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