

Summary

- Preliminary election results on the night of November 5th \rightarrow who will win the presidency and Congress?
- Ensembled prediction rule: combines *fundamentals* model (based on obs. shifts in voter preferences) and *extrapolation* model (based on obs. vote counting process)
- Assumption-lean inference: bootstrap + conformal inference yield final prediction intervals

Set-up and notation

Data

Observe $\{X_i, R_{it}, D_{it}\}_{i=1}^N$ for N counties over times $t \in \{0, \ldots, 100\}$ (% reporting)

 X_i : covariates for county *i* (racial composition, education, income...)

- R_i : Republican votes in county i
- D_i : Democratic votes in county i

Estimands: aggregate outcomes

Margin _{PA} =	$\sum_{i\inPA}$	$D_{i,100} -$	$R_{i,100}$
	$\overline{\sum_{i\inPA}}$	$D_{i,100} +$	$R_{i,100}$

 $Margin_{PA} \approx Margin_{PA}$ $\mathbb{P}\left(\mathsf{Margin}_{\mathsf{PA}}\in\widehat{C}_{\mathsf{PA}}\right)\approx90\%$

Additional forecasts for Electoral College and Senate control

Background

Prior work

- Greben et al. (2006) cluster reporting units using previous elections and extrapolate from within-cluster observations
- Pavia et al. (2008) fit Gaussian Process regression with well-specified covariance kernel
- Cherian et al. (2021) aggregate county-level conformalized quantile regressions via equi-correlated Gaussian model

Figure: County vote swings in the 2008-2012 and 2012-2016 presidential election cycles.

Election modeling in 2024: a conformal inference approach

¹Department of Statistics, Stanford University

²The Washington Post

Prediction rule

Estimand

 $Y_i := \frac{D_{i,100} - R_{i,100}}{\underbrace{D_{i,100} + R_{i,100}}_{i_1}}$

 $D_{i,100}^{b}, R_{i,100}^{b}$ are the previous election result in that county

Fundamentals prediction rule

- Using fully-reported counties, fit models $\widehat{f}_Y(\cdot)$ and $\widehat{f}_Z(\cdot)$ for Y_i and Z_i
- Yields estimator for aggregate margin:

$$\widehat{\text{Margin}}_{\text{PA}} = \frac{\sum_{i \in \text{PA}} w_i \cdot \widehat{f}_Y(X_i) \cdot \widehat{f}_Z(X_i)}{\sum_{i \in \text{PA}} w_i \cdot \widehat{f}_Z(X_i)}$$

• Our approach: $\widehat{f}(\cdot)$ uses cross-validated ridge regression where X_i includes previous unit margin, race, and education

Why ridge?

- AP data is imperfect (esp. early in election night) ~→ need good tools for outlier detection
- Model is most important in early stages of election night $ightarrow {
 m n}pprox 250$

Extrapolation prediction rule

Motivation ■ *Nearly* finished counties → does reported unit margin predict final unit margin? • State-specific voting rules may lead to "*blue* or *red* shifts" (c.f. PA in 2020, CA in 2018)

Figure: Extrapolation error in FL (2020 pres.)

Ensembled prediction rule

Variance-minimizing weights:

$$\widehat{Y}_i = \frac{\sigma_h^2 \cdot \widehat{f}_Y(X_i) + \sigma_f^2 \cdot \widehat{h}_i}{\sigma_h^2 + \sigma_f^2}$$

Predictive inference: background

Want a model P for the *joint* distribution of

- Assuming a statistical model, i.e., $P \in \{P_{\theta}\}_{\theta \in \Theta}$, is fraught
- Standard spatiotemporal methods (kriging, random effects model) have poor predictive coverage \rightsquigarrow Gaussian assumption is problematic

John Cherian¹ Lenny Bronner² Emmanuel Candès^{1,3}

³Department of Mathematics, Stanford University

$$Z_{i} := \frac{D_{i,100} + R_{i,100}}{\underbrace{D_{i,100}^{b} + R_{i,100}^{b}}_{\text{turnout factor}}}$$

where
$$w_i = D_{i,100}^b + R_{i,100}^b$$

Error_{extrap.} =
$$\frac{D_{i,100} - R_{i,100}}{D_{i,100} + R_{i,100}} - \frac{I_{i,100}}{I_{i,100}}$$

$$\frac{D_{i,\text{current}} - R_{i,\text{current}}}{D_{i,\text{current}} + R_{i,\text{current}}}$$

 Within-state extrapolation error is predictable • Est. correction obtained via local regression: \hat{h}_i

 $\left\{Y_{n+i,100} - \widehat{Y}_{n+i}, Z_{n+i,100} - \widehat{Z}_{n+i}\right\}_{(n+i)\in \text{unobs.}} \sim P$

Predictive inference: our approach

Model-free methods (e.g., conformal inference) target marginal coverage

heorem 2 (Gibbs, Cherian, & Candès, 2023) Given any prediction rule $f(\cdot)$ and an exchangeable dataset $\{(X_i, Y_i)\}_{i=1}^{n+1}$ with Y_{n+1} unobs., $\mathbb{P}(Y_{n+1} \in \widehat{C}(X_{n+1}) \mid X_{n+1} \in G) = 1 - \alpha \quad \text{for all } G \in \mathcal{G}$

Reframing this work

Assumption

If I fit our prediction rule to all of the data on election night, $\left\{Y_{i,100} - \widetilde{Y}_i, Z_{i,100} - \widetilde{Z}_i\right\}_{i \in [N]}$ are independent (but **not** identically distributed) We can estimate $\hat{Y}_i - \tilde{Y}_i$ via **model-free bootstrap** (Politis (2015))

We can model heteroskedasticity in $Y_i - \widetilde{Y}_i$ via **conformal prediction**

Algorithm

- . Run conformal method (debiased QR) on leave-one-out residuals for $\alpha \in \{0.01, \ldots, 0.99\}$ \rightsquigarrow CDF est. for $Y_{n+k} - \widehat{Y}_{n+k} \mid G_{n+k}$ and $Z_{n+k} - \widehat{Z}_{n+k} \mid G_{n+k}$ - **Our approach**: run method over sub-groups that historically capture heteroskedasticity
- 2. Compute $\mathbf{U} = \left\{ U_i^Y, U_i^Z \right\}$ by evaluating the estimated CDFs at the observed values of Y_i and Z_i
- **3.** Create *B* datasets $\{X_i, Y_i^{(1)}, Z_i^{(1)}\}, \dots, \{X_i, Y_i^{(B)}, Z_i^{(B)}\}$ by sampling (w/ replacement) from **U**
- 4. Re-compute prediction rule $\{\widehat{Y}^{(b)}(\cdot), \widehat{Z}^{(b)}(\cdot)\}_{b=1}^{B}$ on bootstrap data sets
- 5. Sample B sets of *new* test errors $\left(\epsilon_{n+i}^{(b),Y}, \epsilon_{n+i}^{(b),Z}\right)$ from conformal model

6. Output

Data Science: Dara Gold, Diane Napolitano Engineering: Jen Haskell, Stewart Bishop, Dana Cassidy, Ben King, Alexis Barnes, Anthony Pesce, Claire Helms, Daniel Kao, Emily Liu Graphics: Ashlyn Still

• $\widehat{C}(\cdot)$ obtained via (modified) quantile regression (QR) on residuals (aka conformity scores) • Key insight: conformal inference corrects over-fitting bias of high-dim. QR on prediction errors

 $\widehat{C}_{\mathsf{PA}} = \left[\widehat{\mathsf{Margin}}_{\mathsf{PA}} + Q_{\alpha/2}(\mathsf{Pivot}), \widehat{\mathsf{Margin}}_{\mathsf{PA}} + Q_{1-\alpha/2}(\mathsf{Pivot})\right]$

Acknowledgments